Automatic Program Optimization ============================== Prelude ------- In the past chapters, we learned about how to build primitive tensor functions and connect them to form end-to-end model executions. There are three primary types of abstractions we have used so far. - A computational graph view that drives the high-level executions. - Abstraction for primitive tensor functions. - Library function calls via environment function registration. All of these elements are encapsulated in an IRModule. Most of the MLC processes can be viewed as transformations among tensor functions. There are many different ways to transform the same program. This chapter will discuss ways to automate some of the processes. Preparations ------------ To begin with, we will import necessary dependencies and create helper functions. .. raw:: latex \diilbookstyleinputcell .. code:: python import numpy as np import tvm from tvm import relax from tvm.ir.module import IRModule from tvm.script import relax as R from tvm.script import tir as T .. raw:: latex \diilbookstyleinputcell .. code:: python import IPython def code2html(code): """Helper function to use pygments to turn the code string into highlighted html.""" import pygments from pygments.formatters import HtmlFormatter from pygments.lexers import Python3Lexer formatter = HtmlFormatter() html = pygments.highlight(code, Python3Lexer(), formatter) return "%s\n" % (formatter.get_style_defs(".highlight"), html) Recap: Transform a Primitive Tensor Function. --------------------------------------------- Let us begin by reviewing what we did in our previous chapters – transforming a single primitive tensor function. .. raw:: latex \diilbookstyleinputcell .. code:: python @tvm.script.ir_module class MyModule: @T.prim_func def main( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32"), ): T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i, j, k in T.grid(128, 128, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] First, let us define a set of inputs and outputs for evaluation. .. raw:: latex \diilbookstyleinputcell .. code:: python dtype = "float32" a_np = np.random.rand(128, 128).astype(dtype) b_np = np.random.rand(128, 128).astype(dtype) c_mm = a_np @ b_np We can build and run ``MyModule`` as follows. .. raw:: latex \diilbookstyleinputcell .. code:: python a_nd = tvm.nd.array(a_np) b_nd = tvm.nd.array(b_np) c_nd = tvm.nd.empty((128, 128), dtype="float32") lib = tvm.build(MyModule, target="llvm") f_timer_before = lib.time_evaluator("main", tvm.cpu()) print("Time cost of MyModule: %.3f ms" % (f_timer_before(a_nd, b_nd, c_nd).mean * 1000)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Time cost of MyModule: 3.320 ms Next, we transform ``MyModule`` a bit by reorganizing the loop access pattern. .. raw:: latex \diilbookstyleinputcell .. code:: python def schedule_mm(sch: tvm.tir.Schedule, jfactor=4): block_C = sch.get_block("C", "main") i, j, k = sch.get_loops(block=block_C) j_0, j_1 = sch.split(loop=j, factors=[None, jfactor]) sch.reorder(i, j_0, k, j_1) sch.decompose_reduction(block_C, k) return sch .. raw:: latex \diilbookstyleinputcell .. code:: python sch = tvm.tir.Schedule(MyModule) sch = schedule_mm(sch) IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i, j_0 in T.grid(128, 32):
                for j_1_init in range(4):
                    with T.block("C_init"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 4 + j_1_init)
                        T.reads()
                        T.writes(C[vi, vj])
                        C[vi, vj] = T.float32(0)
                for k, j_1 in T.grid(128, 4):
                    with T.block("C_update"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 4 + j_1)
                        vk = T.axis.reduce(128, k)
                        T.reads(C[vi, vj], A[vi, vk], B[vk, vj])
                        T.writes(C[vi, vj])
                        C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
Then we can build and run the re-organized program. .. raw:: latex \diilbookstyleinputcell .. code:: python lib = tvm.build(sch.mod, target="llvm") f_timer_after = lib.time_evaluator("main", tvm.cpu()) print("Time cost of MyModule=>schedule_mm: %.3f ms" % (f_timer_after(a_nd, b_nd, c_nd).mean * 1000)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Time cost of MyModule=>schedule_mm: 1.684 ms Transformation Trace ~~~~~~~~~~~~~~~~~~~~ Besides ``sch.mod`` field, another thing ``tir.Schedule`` offers is a trace field that can be used to show the steps involved to get to the transformed module. We can print it out using the following code. .. raw:: latex \diilbookstyleinputcell .. code:: python print(sch.trace) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) l4, l5 = sch.split(loop=l2, factors=[None, 4], preserve_unit_iters=True) sch.reorder(l1, l4, l3, l5) b6 = sch.decompose_reduction(block=b0, loop=l3) .. raw:: latex \diilbookstyleinputcell .. code:: python def schedule_mm(sch: tvm.tir.Schedule, jfactor=4): block_C = sch.get_block("C", "main") i, j, k = sch.get_loops(block=block_C) j_0, j_1 = sch.split(loop=j, factors=[None, jfactor]) sch.reorder(i, j_0, k, j_1) sch.decompose_reduction(block_C, k) return sch The above trace aligns with the transformations we specified in ``schedule_mm``. One thing to note is that the trace (plus the original program) gives us a way to completely re-derive the final output program. Let us keep that in mind; we will use trace throughout this chapter as another way to inspect the transformations. Stochastic Schedule Transformation ---------------------------------- Up until now, we have specified every detail about what transformations we want to make on the original TensorIR program. Many of those choices are based on our understanding of the underlying environment, such as cache and hardware unit. However, in practice, we may not be able to decide every detail accurately. Instead of doing so, we would like to specify **what are possible ways to transform the program, while leaving out some details**. One natural way to achieve the goal is to add some stochastic (randomness) elements to our transformations. The following code does that. .. raw:: latex \diilbookstyleinputcell .. code:: python def stochastic_schedule_mm(sch: tvm.tir.Schedule): block_C = sch.get_block("C", "main") i, j, k = sch.get_loops(block=block_C) j_factors = sch.sample_perfect_tile(loop=j, n=2) j_0, j_1 = sch.split(loop=j, factors=j_factors) sch.reorder(i, j_0, k, j_1) sch.decompose_reduction(block_C, k) return sch .. figure:: ../img/auto_prog_optim_stoch_sch_transformation.png Let us compare ``stochastic_schedule_mm`` and ``schedule_mm`` side by side. We can find that the only difference is how to specify ``j_factors``. In the case of ``schedule_mm``, ``j_factors`` is passed in as a parameter specified by us. In the case of ``stochastic_schedule_mm``, it comes from ``sch.sample_perfect_tile``. As the name suggests, ``sch.sample_perfect_tile`` tries to draw random numbers to fill in ``j_factors``. It samples factors such that they perfectly split the loop. For example, when the original loop size is ``128``, possible ways to split the loop include: ``[8, 16]``, ``[32, 4]``, ``[2, 64]`` (note ``8 * 16 = 32 * 4 = 2 * 64 = 128``). Let us first try to see what is the effect of ``stochastic_schedule_mm`` by running the following code-block. Try to run the following code block multiple times and observe the outcome difference. You might find that the loop bound of ``j_1`` changes each time we run the code-block. .. raw:: latex \diilbookstyleinputcell .. code:: python sch = tvm.tir.Schedule(MyModule) sch = stochastic_schedule_mm(sch) IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i, j_0 in T.grid(128, 32):
                for j_1_init in range(4):
                    with T.block("C_init"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 4 + j_1_init)
                        T.reads()
                        T.writes(C[vi, vj])
                        C[vi, vj] = T.float32(0)
                for k, j_1 in T.grid(128, 4):
                    with T.block("C_update"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 4 + j_1)
                        vk = T.axis.reduce(128, k)
                        T.reads(C[vi, vj], A[vi, vk], B[vk, vj])
                        T.writes(C[vi, vj])
                        C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
What is happening here is that each time we run ``stochastic_schedule_mm`` it draws a different ``j_factors`` randomly. We can print out the trace of the latest one to see the decisions we made in sampling. .. raw:: latex \diilbookstyleinputcell .. code:: python print(sch.trace) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[32, 4]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) When we look at the trace, pay close attention to the ``decision=[...]`` part of ``sample_perfect_tile``. They correspond to the value that the ``sampling_perfect_tile`` picked in our last call to ``stochastic_schedule_mm``. As an alternative way to look at different samples of ``stochastic_schedule_mm``, we can run the following block multiple times and look at the trace. .. raw:: latex \diilbookstyleinputcell .. code:: python sch = tvm.tir.Schedule(MyModule) sch = stochastic_schedule_mm(sch) print(sch.trace) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[32, 4]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) Deep Dive into Stochastic Transformation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Now let us take a deeper dive into what happened in stochastic schedule transformations. We can find that it is a simple generalization of the original deterministic transformations, with two additional elements: - Random variables that come from ``sample_perfect_tile`` and other sampling operations that we did not cover in the example. - Schedule operations that take action depending on the random variables. Let us try to run the stochastic transformation step by step. .. raw:: latex \diilbookstyleinputcell .. code:: python sch = tvm.tir.Schedule(MyModule) block_C = sch.get_block("C", "main") i, j, k = sch.get_loops(block=block_C) j_factors = sch.sample_perfect_tile(loop=j, n=2) .. raw:: latex \diilbookstyleinputcell .. code:: python type(j_factors[0]) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output tvm.tir.expr.Var Elements in the ``j_factors`` are not real integer numbers. Instead, they are **symbolic variables** that refer to a random variable being sampled. We can pass these variables to the transformation API to specify choices such as factor values. .. raw:: latex \diilbookstyleinputcell .. code:: python print(sch.trace) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[8, 16]) The schedule trace keeps track of the choices of these symbolic variables in the ``decisions`` field. So follow-up steps will be able to look up these choices to decide how to split the loop. .. raw:: latex \diilbookstyleinputcell .. code:: python IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i, j, k in T.grid(128, 128, 128):
                with T.block("C"):
                    vi, vj, vk = T.axis.remap("SSR", [i, j, k])
                    T.reads(A[vi, vk], B[vk, vj])
                    T.writes(C[vi, vj])
                    with T.init():
                        C[vi, vj] = T.float32(0)
                    C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
If we look at the code at the current time point, we can find that the module remains the same since we only sampled the random variables but have not yet made any transformation actions based on them. Let us now take some of the actions: .. raw:: latex \diilbookstyleinputcell .. code:: python j_0, j_1 = sch.split(loop=j, factors=j_factors) sch.reorder(i, j_0, k, j_1) These actions are recorded in the following trace. .. raw:: latex \diilbookstyleinputcell .. code:: python print(sch.trace) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[8, 16]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) If we retake a look at the code, the transformed module now corresponds to the updated versions after the actions are taken. .. raw:: latex \diilbookstyleinputcell .. code:: python IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i, j_0, k, j_1 in T.grid(128, 8, 128, 16):
                with T.block("C"):
                    vi = T.axis.spatial(128, i)
                    vj = T.axis.spatial(128, j_0 * 16 + j_1)
                    vk = T.axis.reduce(128, k)
                    T.reads(A[vi, vk], B[vk, vj])
                    T.writes(C[vi, vj])
                    with T.init():
                        C[vi, vj] = T.float32(0)
                    C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
We can do some further transformations to get to the final state. .. raw:: latex \diilbookstyleinputcell .. code:: python sch.reorder(i, j_0, k, j_1) sch.decompose_reduction(block_C, k) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output tir.BlockRV(0x48cda30) .. raw:: latex \diilbookstyleinputcell .. code:: python IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i, j_0 in T.grid(128, 8):
                for j_1_init in range(16):
                    with T.block("C_init"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 16 + j_1_init)
                        T.reads()
                        T.writes(C[vi, vj])
                        C[vi, vj] = T.float32(0)
                for k, j_1 in T.grid(128, 16):
                    with T.block("C_update"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 16 + j_1)
                        vk = T.axis.reduce(128, k)
                        T.reads(C[vi, vj], A[vi, vk], B[vk, vj])
                        T.writes(C[vi, vj])
                        C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
Search Over Stochastic Transformations -------------------------------------- One thing that you might realize is that ``stochastic_schedule_mm`` create a **search space of possible programs** depending on the specific decisions made at each sampling step. .. figure:: ../img/auto_prog_optim_transformation_search.png Coming back to our initial intuition, we want to be able to specify a set of **possible programs** instead of one program. ``stochastic_schedule_mm`` did exactly that. Of course, one natural question to ask next is what is the best choice. We will need a search algorithm to do that. To show what can be done here, let us first try the most straightforward search algorithm – random search, in the following code block. It tries to run ``stochastic_schedule_mm`` repetitively, gets a transformed module, runs benchmark, then book keep the best one in history. .. raw:: latex \diilbookstyleinputcell .. code:: python def random_search(mod: tvm.IRModule, num_trials=5): best_result = None best_sch = None for i in range(num_trials): sch = stochastic_schedule_mm(tvm.tir.Schedule(mod)) lib = tvm.build(sch.mod, target="llvm") f_timer_after = lib.time_evaluator("main", tvm.cpu()) result = f_timer_after(a_nd, b_nd, c_nd).mean print("=====Attempt %d, time-cost: %.3f ms====" % (i, result * 1000)) print(sch.trace) # book keep the best result so far if best_result is None or result < best_result: best_result = result best_sch = sch return best_sch sch = random_search(MyModule) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output =====Attempt 0, time-cost: 1.429 ms==== # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[16, 8]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) =====Attempt 1, time-cost: 1.229 ms==== # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[8, 16]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) =====Attempt 2, time-cost: 1.688 ms==== # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[32, 4]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) =====Attempt 3, time-cost: 1.431 ms==== # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[16, 8]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) =====Attempt 4, time-cost: 1.690 ms==== # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[32, 4]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) If we run the code, we can find that it goes over a few choices and then returns the best run throughout five trials. .. raw:: latex \diilbookstyleinputcell .. code:: python print(sch.trace) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # from tvm import tir def apply_trace(sch: tir.Schedule) -> None: b0 = sch.get_block(name="C", func_name="main") l1, l2, l3 = sch.get_loops(block=b0) v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[8, 16]) l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True) sch.reorder(l1, l6, l3, l7) b8 = sch.decompose_reduction(block=b0, loop=l3) In practice, we use smarter algorithms. We also need to provide additional utilities, such as benchmarking on remote devices, if we are interested in optimization for other devices. TVM’s meta schedule API provides these additional capabilities. ``meta_schedule`` is the namespace that comes to support search over a space of possible transformations. There are many additional things that meta-schedule do behind the scene: - Parallel benchmarking across many processes. - Use cost models to avoid benchmarking each time. - Evolutionary search on the traces instead of randomly sampling at each time. Despite these magics, the key idea remains the same: **use stochastic transformation to specify a search space of good programs, ``tune_tir`` API helps to search and find an optimized solution within the search space**. .. raw:: latex \diilbookstyleinputcell .. code:: python from tvm import meta_schedule as ms database = ms.tune_tir( mod=MyModule, target="llvm --num-cores=1", max_trials_global=64, num_trials_per_iter=64, space=ms.space_generator.ScheduleFn(stochastic_schedule_mm), work_dir="./tune_tmp", task_name="main" ) sch = ms.tir_integration.compile_tir(database, MyModule, "llvm --num-cores=1") .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output 2023-04-05 15:51:06 [INFO] [task_scheduler.cc:260] Task #0 has finished. Remaining task(s): 0 .. raw:: html
Name FLOP Weight Speed (GFLOPS) Latency (us) Weighted Latency (us) Trials Done
0 main 4194304 1 3.4113 1229.5386 1229.5386 5 Y
.. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output 2023-04-05 15:51:06 [DEBUG] [task_scheduler.cc:318] ID | Name | FLOP | Weight | Speed (GFLOPS) | Latency (us) | Weighted Latency (us) | Trials | Done ------------------------------------------------------------------------------------------------------ 0 | main | 4194304 | 1 | 3.4113 | 1229.5386 | 1229.5386 | 5 | Y ------------------------------------------------------------------------------------------------------ Total trials: 5 Total latency (us): 1229.54 Total trials: 5 Total latency (us): 1229.54 ``tune_tir`` functions return an optimized schedule found during the tuning process. .. raw:: latex \diilbookstyleinputcell .. code:: python sch.trace.show() .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output /usr/share/miniconda/envs/mlc/lib/python3.8/site-packages/tvm/script/highlight.py:117: UserWarning: No module named 'black' To print formatted TVM script, please install the formatter 'Black': /usr/share/miniconda/envs/mlc/bin/python -m pip install "black==22.3.0" --upgrade --user warnings.warn( .. raw:: html
# from tvm import tir
    def apply_trace(sch: tir.Schedule) -> None:
      b0 = sch.get_block(name="C", func_name="main")
      l1, l2, l3 = sch.get_loops(block=b0)
      v4, v5 = sch.sample_perfect_tile(loop=l2, n=2, max_innermost_factor=16, decision=[8, 16])
      l6, l7 = sch.split(loop=l2, factors=[v4, v5], preserve_unit_iters=True)
      sch.reorder(l1, l6, l3, l7)
      b8 = sch.decompose_reduction(block=b0, loop=l3)
      sch.enter_postproc()
    
.. raw:: latex \diilbookstyleinputcell .. code:: python IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i, j_0 in T.grid(128, 8):
                for j_1_init in range(16):
                    with T.block("C_init"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 16 + j_1_init)
                        T.reads()
                        T.writes(C[vi, vj])
                        C[vi, vj] = T.float32(0)
                for k, j_1 in T.grid(128, 16):
                    with T.block("C_update"):
                        vi = T.axis.spatial(128, i)
                        vj = T.axis.spatial(128, j_0 * 16 + j_1)
                        vk = T.axis.reduce(128, k)
                        T.reads(C[vi, vj], A[vi, vk], B[vk, vj])
                        T.writes(C[vi, vj])
                        C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
.. raw:: latex \diilbookstyleinputcell .. code:: python lib = tvm.build(sch.mod, target="llvm") f_timer_after = lib.time_evaluator("main", tvm.cpu()) print("Time cost of MyModule after tuning: %.3f ms" % (f_timer_after(a_nd, b_nd, c_nd).mean * 1000)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Time cost of MyModule after tuning: 1.230 ms Leverage Default AutoScheduling ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In the last section, we showed how to tune a workload with stochastic transformations that we crafted. Metaschedule comes with its own built-in set of generic stochastic transformations that works for a broad set of TensorIR computations. This approach is also called auto-scheduling, as the search space is generated by the system. We can run it by removing the line ``space=ms.space_generator.ScheduleFn(stochastic_schedule_mm)``. Under the hood, the meta-scheduler analyzes each block’s data access and loop patterns and proposes stochastic transformations to the program. We won’t go into these generic transformations in this chapter but want to note that they are also just stochastic transformations coupled with an analysis of the code. We can use the same mechanisms learned in the last section to enhance auto-scheduling. We will touch base on this topic in future chapters. .. raw:: latex \diilbookstyleinputcell .. code:: python database = ms.tune_tir( mod=MyModule, target="llvm --num-cores=1", max_trials_global=64, num_trials_per_iter=64, work_dir="./tune_tmp", task_name="main", ) sch = ms.tir_integration.compile_tir(database, MyModule, "llvm --num-cores=1") .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output 2023-04-05 15:52:08 [INFO] [task_scheduler.cc:260] Task #0 has finished. Remaining task(s): 0 .. raw:: html
Name FLOP Weight Speed (GFLOPS) Latency (us) Weighted Latency (us) Trials Done
0 main 4194304 1 20.4806 204.7938 204.7938 64 Y
.. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Total trials: 64 Total latency (us): 204.794 2023-04-05 15:52:08 [DEBUG] [task_scheduler.cc:318] ID | Name | FLOP | Weight | Speed (GFLOPS) | Latency (us) | Weighted Latency (us) | Trials | Done ------------------------------------------------------------------------------------------------------ 0 | main | 4194304 | 1 | 20.4806 | 204.7938 | 204.7938 | 64 | Y ------------------------------------------------------------------------------------------------------ Total trials: 64 Total latency (us): 204.794 .. raw:: latex \diilbookstyleinputcell .. code:: python lib = tvm.build(sch.mod, target="llvm") f_timer_after = lib.time_evaluator("main", tvm.cpu()) print("Time cost of MyModule after tuning: %.3f ms" % (f_timer_after(a_nd, b_nd, c_nd).mean * 1000)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Time cost of MyModule after tuning: 0.209 ms The result gets much faster than our original code. We can take a glimpse at the trace and the final code. For the purpose of this chapter, you do not need to understand all the transformations. At a high level, the trace involves: - More levels of loop tiling transformations. - Vectorization of intermediate computations. - Parallelization and unrolling of loops. .. raw:: latex \diilbookstyleinputcell .. code:: python sch.trace.show() .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output /usr/share/miniconda/envs/mlc/lib/python3.8/site-packages/tvm/script/highlight.py:117: UserWarning: No module named 'black' To print formatted TVM script, please install the formatter 'Black': /usr/share/miniconda/envs/mlc/bin/python -m pip install "black==22.3.0" --upgrade --user warnings.warn( .. raw:: html
# from tvm import tir
    def apply_trace(sch: tir.Schedule) -> None:
      b0 = sch.get_block(name="C", func_name="main")
      b1 = sch.get_block(name="root", func_name="main")
      sch.annotate(block_or_loop=b0, ann_key="meta_schedule.tiling_structure", ann_val="SSRSRS")
      l2, l3, l4 = sch.get_loops(block=b0)
      v5, v6, v7, v8 = sch.sample_perfect_tile(loop=l2, n=4, max_innermost_factor=64, decision=[1, 32, 1, 4])
      l9, l10, l11, l12 = sch.split(loop=l2, factors=[v5, v6, v7, v8], preserve_unit_iters=True)
      v13, v14, v15, v16 = sch.sample_perfect_tile(loop=l3, n=4, max_innermost_factor=64, decision=[1, 128, 1, 1])
      l17, l18, l19, l20 = sch.split(loop=l3, factors=[v13, v14, v15, v16], preserve_unit_iters=True)
      v21, v22 = sch.sample_perfect_tile(loop=l4, n=2, max_innermost_factor=64, decision=[16, 8])
      l23, l24 = sch.split(loop=l4, factors=[v21, v22], preserve_unit_iters=True)
      sch.reorder(l9, l17, l10, l18, l23, l11, l19, l24, l12, l20)
      sch.annotate(block_or_loop=b1, ann_key="meta_schedule.parallel", ann_val=16)
      sch.annotate(block_or_loop=b1, ann_key="meta_schedule.vectorize", ann_val=64)
      v25 = sch.sample_categorical(candidates=[0, 16, 64, 512], probs=[0.25, 0.25, 0.25, 0.25], decision=3)
      sch.annotate(block_or_loop=b1, ann_key="meta_schedule.unroll_explicit", ann_val=v25)
      sch.enter_postproc()
      b26 = sch.get_block(name="root", func_name="main")
      sch.unannotate(block_or_loop=b26, ann_key="meta_schedule.parallel")
      sch.unannotate(block_or_loop=b26, ann_key="meta_schedule.vectorize")
      sch.unannotate(block_or_loop=b26, ann_key="meta_schedule.unroll_explicit")
      b27, = sch.get_child_blocks(b26)
      l28, l29, l30, l31, l32, l33, l34, l35, l36, l37 = sch.get_loops(block=b27)
      l38 = sch.fuse(l28, l29, l30, preserve_unit_iters=True)
      sch.parallel(loop=l38)
      sch.annotate(block_or_loop=l38, ann_key="pragma_auto_unroll_max_step", ann_val=512)
      sch.annotate(block_or_loop=l38, ann_key="pragma_unroll_explicit", ann_val=1)
      b39 = sch.get_block(name="C", func_name="main")
      l40, l41, l42, l43, l44, l45, l46, l47 = sch.get_loops(block=b39)
      b48 = sch.decompose_reduction(block=b39, loop=l42)
    
.. raw:: latex \diilbookstyleinputcell .. code:: python IPython.display.HTML(code2html(sch.mod.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            for i_0_j_0_i_1_fused in T.parallel(32, annotations={"pragma_auto_unroll_max_step": 512, "pragma_unroll_explicit": 1}):
                for j_1 in range(128):
                    for i_2_init, j_2_init, i_3_init, j_3_init in T.grid(1, 1, 4, 1):
                        with T.block("C_init"):
                            vi = T.axis.spatial(128, i_0_j_0_i_1_fused * 4 + i_2_init * 4 + i_3_init)
                            vj = T.axis.spatial(128, j_1 + j_2_init + j_3_init)
                            T.reads()
                            T.writes(C[vi, vj])
                            T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"})
                            C[vi, vj] = T.float32(0)
                    for k_0, i_2, j_2, k_1, i_3, j_3 in T.grid(16, 1, 1, 8, 4, 1):
                        with T.block("C_update"):
                            vi = T.axis.spatial(128, i_0_j_0_i_1_fused * 4 + i_2 * 4 + i_3)
                            vj = T.axis.spatial(128, j_1 + j_2 + j_3)
                            vk = T.axis.reduce(128, k_0 * 8 + k_1)
                            T.reads(C[vi, vj], A[vi, vk], B[vk, vj])
                            T.writes(C[vi, vj])
                            T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"})
                            C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    
Section Checkpoint ~~~~~~~~~~~~~~~~~~ Let us have a checkpoint about what we have learned so far. - Stochastic schedule allow us to express “what are the possible transformations”. - Metaschedule’s ``tune_tir`` API helps to find a good solution within the space. - Metaschedule comes with a default built-in set of stochastic transformations that covers a broad range of search space. Putting Things Back to End to End Model Execution ------------------------------------------------- Up until now, we have learned to automate program optimization of a single tensor primitive function. How can we put it back and improve our end-to-end model execution? From the MLC perspective, the automated search is a modular step, and we just need to replace the original primitive function implementation with the new one provided by the tuned result. We will reuse the two-layer MLP example from the last chapter. .. raw:: latex \diilbookstyleinputcell .. code:: python import torch import torchvision test_data = torchvision.datasets.FashionMNIST( root="data", train=False, download=True, transform=torchvision.transforms.ToTensor() ) test_loader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=True) class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] img, label = next(iter(test_loader)) img = img.reshape(1, 28, 28).numpy() .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz 100.0% Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz 100.0% Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz 100.0% Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz 100.0%Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw .. raw:: latex \diilbookstyleinputcell .. code:: python import matplotlib.pyplot as plt plt.figure() plt.imshow(img[0]) plt.colorbar() plt.grid(False) plt.show() print("Class:", class_names[label[0]]) .. figure:: output_index_1f4d27_59_0.png .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Class: Sandal We also download pre-packed model parameters that we will use in our examples. .. raw:: latex \diilbookstyleinputcell .. code:: python # Hide outputs !wget -nc https://github.com/mlc-ai/web-data/raw/main/models/fasionmnist_mlp_params.pkl .. figure:: ../img/e2e_fashionmnist_mlp_model.png As a reminder, the above figure shows the model of interest. .. raw:: latex \diilbookstyleinputcell .. code:: python import pickle as pkl mlp_params = pkl.load(open("fasionmnist_mlp_params.pkl", "rb")) data_nd = tvm.nd.array(img.reshape(1, 784)) nd_params = {k: tvm.nd.array(v) for k, v in mlp_params.items()} Let us use a mixture module where most of the components call into environment function and also come with one TensorIR function ``linear0``. .. raw:: latex \diilbookstyleinputcell .. code:: python @tvm.script.ir_module class MyModuleMixture: @T.prim_func def linear0(X: T.Buffer((1, 784), "float32"), W: T.Buffer((128, 784), "float32"), B: T.Buffer((128,), "float32"), Z: T.Buffer((1, 128), "float32")): T.func_attr({"global_symbol": "linear0", "tir.noalias": True}) Y = T.alloc_buffer((1, 128), "float32") for i, j, k in T.grid(1, 128, 784): with T.block("Y"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): Y[vi, vj] = T.float32(0) Y[vi, vj] = Y[vi, vj] + X[vi, vk] * W[vj, vk] for i, j in T.grid(1, 128): with T.block("Z"): vi, vj = T.axis.remap("SS", [i, j]) Z[vi, vj] = Y[vi, vj] + B[vj] @R.function def main(x: R.Tensor((1, 784), "float32"), w0: R.Tensor((128, 784), "float32"), b0: R.Tensor((128,), "float32"), w1: R.Tensor((10, 128), "float32"), b1: R.Tensor((10,), "float32")): with R.dataflow(): lv0 = R.call_dps_packed("linear0", (x, w0, b0), R.Tensor((1, 128), dtype="float32")) lv1 = R.call_dps_packed("env.relu", (lv0,), R.Tensor((1, 128), dtype="float32")) out = R.call_dps_packed("env.linear", (lv1, w1, b1), R.Tensor((1, 10), dtype="float32")) R.output(out) return out .. raw:: latex \diilbookstyleinputcell .. code:: python @tvm.register_func("env.linear", override=True) def torch_linear(x: tvm.nd.NDArray, w: tvm.nd.NDArray, b: tvm.nd.NDArray, out: tvm.nd.NDArray): x_torch = torch.from_dlpack(x) w_torch = torch.from_dlpack(w) b_torch = torch.from_dlpack(b) out_torch = torch.from_dlpack(out) torch.mm(x_torch, w_torch.T, out=out_torch) torch.add(out_torch, b_torch, out=out_torch) @tvm.register_func("env.relu", override=True) def lnumpy_relu(x: tvm.nd.NDArray, out: tvm.nd.NDArray): x_torch = torch.from_dlpack(x) out_torch = torch.from_dlpack(out) torch.maximum(x_torch, torch.Tensor([0.0]), out=out_torch) We can bind the parameters and see if it gives the correct prediction. .. raw:: latex \diilbookstyleinputcell .. code:: python MyModuleWithParams = relax.transform.BindParams("main", nd_params)(MyModuleMixture) .. raw:: latex \diilbookstyleinputcell .. code:: python ex = relax.build(MyModuleWithParams, target="llvm") vm = relax.VirtualMachine(ex, tvm.cpu()) nd_res = vm["main"](data_nd) pred_kind = np.argmax(nd_res.numpy(), axis=1) print("MyModuleWithParams Prediction:", class_names[pred_kind[0]]) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output MyModuleWithParams Prediction: Sandal The following code evaluates the run time cost of the module before the transformation. Note that because this is a small model, the number can fluctuate a bit between runs, so we just need to read the overall magnitude. .. raw:: latex \diilbookstyleinputcell .. code:: python ftimer = vm.module.time_evaluator("main", tvm.cpu(), number=100) print("MyModuleWithParams time-cost: %g ms" % (ftimer(data_nd).mean * 1000)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output MyModuleWithParams time-cost: 0.236435 ms We are now ready to tune the ``linear0``. Our overall process is summarized in the following diagram. .. figure:: ../img/auto_prog_optim_optim_flow.png Currently, tune API only takes an IRModule with one ``main`` function, so we first get the ``linear0`` out into another module’s main function and pass it to tune .. raw:: latex \diilbookstyleinputcell .. code:: python mod_linear = tvm.IRModule.from_expr(MyModuleMixture["linear0"].with_attr("global_symbol", "main")) IPython.display.HTML(code2html(mod_linear.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    
    @I.ir_module
    class Module:
        @T.prim_func
        def main(X: T.Buffer((1, 784), "float32"), W: T.Buffer((128, 784), "float32"), B: T.Buffer((128,), "float32"), Z: T.Buffer((1, 128), "float32")):
            T.func_attr({"global_symbol": "main", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            Y = T.alloc_buffer((1, 128))
            for i, j, k in T.grid(1, 128, 784):
                with T.block("Y"):
                    vi, vj, vk = T.axis.remap("SSR", [i, j, k])
                    T.reads(X[vi, vk], W[vj, vk])
                    T.writes(Y[vi, vj])
                    with T.init():
                        Y[vi, vj] = T.float32(0)
                    Y[vi, vj] = Y[vi, vj] + X[vi, vk] * W[vj, vk]
            for i, j in T.grid(1, 128):
                with T.block("Z"):
                    vi, vj = T.axis.remap("SS", [i, j])
                    T.reads(Y[vi, vj], B[vj])
                    T.writes(Z[vi, vj])
                    Z[vi, vj] = Y[vi, vj] + B[vj]
    
.. raw:: latex \diilbookstyleinputcell .. code:: python database = ms.tune_tir( mod=mod_linear, target="llvm --num-cores=1", max_trials_global=64, num_trials_per_iter=64, work_dir="./tune_tmp", task_name="main", ) sch = ms.tir_integration.compile_tir(database, mod_linear, "llvm --num-cores=1") .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output 2023-04-05 15:53:09 [INFO] [task_scheduler.cc:260] Task #0 has finished. Remaining task(s): 0 .. raw:: html
Name FLOP Weight Speed (GFLOPS) Latency (us) Weighted Latency (us) Trials Done
0 main 200832 1 8.1492 24.6443 24.6443 64 Y
.. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Total trials: 64 Total latency (us): 24.6443 2023-04-05 15:53:09 [DEBUG] [task_scheduler.cc:318] ID | Name | FLOP | Weight | Speed (GFLOPS) | Latency (us) | Weighted Latency (us) | Trials | Done ----------------------------------------------------------------------------------------------------- 0 | main | 200832 | 1 | 8.1492 | 24.6443 | 24.6443 | 64 | Y ----------------------------------------------------------------------------------------------------- Total trials: 64 Total latency (us): 24.6443 Now we need to replace the original ``linear0`` with the new function after tuning. We can do that by first getting a ``global_var``, a ``pointer`` reference to the functions inside the IRModule, then calling ``update_func`` to replace the function with the new one. .. raw:: latex \diilbookstyleinputcell .. code:: python MyModuleWithParams2 = relax.transform.BindParams("main", nd_params)(MyModuleMixture) new_func = sch.mod["main"].with_attr("global_symbol", "linear0") gv = MyModuleWithParams2.get_global_var("linear0") MyModuleWithParams2.update_func(gv, new_func) IPython.display.HTML(code2html(MyModuleWithParams2.script())) .. raw:: html
# from tvm.script import ir as I
    # from tvm.script import tir as T
    # from tvm.script import relax as R
    
    @I.ir_module
    class Module:
        @T.prim_func
        def linear0(X: T.Buffer((1, 784), "float32"), W: T.Buffer((128, 784), "float32"), B: T.Buffer((128,), "float32"), Z: T.Buffer((1, 128), "float32")):
            T.func_attr({"global_symbol": "linear0", "tir.noalias": T.bool(True)})
            # with T.block("root"):
            Y = T.alloc_buffer((1, 128))
            for i_0 in T.serial(1, annotations={"pragma_auto_unroll_max_step": 64, "pragma_unroll_explicit": 1}):
                for j_0 in range(1):
                    for i_1, j_1 in T.grid(1, 16):
                        for i_2_init, j_2_init, i_3_init in T.grid(1, 4, 1):
                            for j_3_fused_init in T.vectorized(2):
                                with T.block("Y_init"):
                                    vi = T.axis.spatial(1, i_0 + i_1 + i_2_init + i_3_init)
                                    vj = T.axis.spatial(128, j_0 * 128 + j_1 * 8 + j_2_init * 2 + j_3_fused_init)
                                    T.reads()
                                    T.writes(Y[vi, vj])
                                    T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"})
                                    Y[vi, vj] = T.float32(0)
                        for k_0, i_2, j_2, k_1, i_3 in T.grid(784, 1, 4, 1, 1):
                            for j_3_fused in T.vectorized(2):
                                with T.block("Y_update"):
                                    vi = T.axis.spatial(1, i_0 + i_1 + i_2 + i_3)
                                    vj = T.axis.spatial(128, j_0 * 128 + j_1 * 8 + j_2 * 2 + j_3_fused)
                                    vk = T.axis.reduce(784, k_0 + k_1)
                                    T.reads(Y[vi, vj], X[vi, vk], W[vj, vk])
                                    T.writes(Y[vi, vj])
                                    T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"})
                                    Y[vi, vj] = Y[vi, vj] + X[vi, vk] * W[vj, vk]
                    for ax0, ax1 in T.grid(1, 128):
                        with T.block("Z"):
                            vi, vj = T.axis.remap("SS", [ax0, ax1])
                            T.reads(Y[vi, vj], B[vj])
                            T.writes(Z[vi, vj])
                            Z[vi, vj] = Y[vi, vj] + B[vj]
    
        @R.function
        def main(x: R.Tensor((1, 784), dtype="float32")) -> R.Tensor((1, 10), dtype="float32"):
            with R.dataflow():
                lv0 = R.call_dps_packed("linear0", (x, metadata["relax.expr.Constant"][0], metadata["relax.expr.Constant"][1]), out_sinfo=R.Tensor((1, 128), dtype="float32"))
                lv1 = R.call_dps_packed("env.relu", (lv0,), out_sinfo=R.Tensor((1, 128), dtype="float32"))
                out = R.call_dps_packed("env.linear", (lv1, metadata["relax.expr.Constant"][2], metadata["relax.expr.Constant"][3]), out_sinfo=R.Tensor((1, 10), dtype="float32"))
                R.output(out)
            return out
    
    # Metadata omitted. Use show_meta=True in script() method to show it.
    
We can find that the ``linear0`` has been replaced in the above code. .. raw:: latex \diilbookstyleinputcell .. code:: python ex = relax.build(MyModuleWithParams2, target="llvm") vm = relax.VirtualMachine(ex, tvm.cpu()) nd_res = vm["main"](data_nd) pred_kind = np.argmax(nd_res.numpy(), axis=1) print("MyModuleWithParams2 Prediction:", class_names[pred_kind[0]]) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output MyModuleWithParams2 Prediction: Sandal Running the code again, we can find that we get an observable amount of time reduction, mainly thanks to the new ``linear0`` function. .. raw:: latex \diilbookstyleinputcell .. code:: python ftimer = vm.module.time_evaluator("main", tvm.cpu(), number=50) print("MyModuleWithParams2 time-cost: %g ms" % (ftimer(data_nd).mean * 1000)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output MyModuleWithParams2 time-cost: 0.0982011 ms Discussions ----------- We might notice that our previous two chapters focused on **abstraction** while this chapter starts to focus on **transformation**. Stochastic transformations specify what can be possibly optimized without nailing down all the choices. The meta-schedule API helps us to search over the space of possible transformations and pick the best one. Importantly, putting the search result back into the end-to-end flow is just a matter of replacing the implementation of the original function with a new one that is informed by the tuning process. So we again are following the generic MLC process in the figure below. In future lectures, we will introduce more kinds of transformations on primitive functions and computational graph functions. A good MLC process composes these transformations together to form an end deployment form. .. figure:: ../img/mlc_process.png Summary ------- - Stochastic transformations help us to specify a search space of possible programs. - MetaSchedule searches over the search space and finds an optimized one. - We can use another transformation to replace the primitive tensor function with optimized ones and an updated end-to-end execution flow.