
Machine Learning Compilation

Introduction

Tianqi Chen



Outline
Why study machine learning compilation

Key elements in machine learning compilation



Software Landscape

Wide Range of Applications

Python LLVM/Clang .…

Software Libraries

Broad coverage.

Compute performance is 
less critical.

Engineers handles most 
optimizations



AI Software Landscape

ML 
Models Data

Compute

Diverse and fast evolving models

Big data

Specialized compute acceleration

Transformer,
ResNet, LSTM

…
…



Machine Learning Deployment Problem
Deployment Environments

Vision

NLP and 
Speech

Intelligent Applications

Protein 
folding Gap

A lot of heavy lifting involved to bring 
intelligent applications to deployment 
environments.

Factors include: hardware(ARM, x86, 
RISCV),operation system, container execution 
environment, runtime library variants, 
accelerator involved…



Machine Learning Compilation
Development Form Deployment Form

Transformer,
ResNet, LSTM

…

Description for execution engine 

weights 𝑤! 𝑤"

dnn-matmul softmaxliblibraries

API Interface

Android OpenCL Runtime

Machine learning compilation (MLC) is the 
process to transform and optimize machine 
learning execution from its development form 
to deployment form.

Android NN

relu

An example instance of deployment form

MLC Process



MLC Goal: Integration and Dependency Minimization

ResNet: Model for vision

Development

conv2d softmax relu …

…
Embedding 

lookup fft tanh

uniform conv1d

Support for other models

Features to support the current model

Deployment

API Interface

conv2d softmax relu

Minimum set of libraries to support the model

Integrate libraries (possibly developed by different 
parties) together and only incorporate necessary ones 



MLC Goal: Leverage Hardware Native Acceleration

Deployment

API Interface

conv2d softmax relu

Libraries with hardware acceleration

Generate deployment forms that offers 
leverages native accelerations from 
specialized hardware backends



MLC Goal: Optimization in General

There are many equivalent ways to run the same model execution. The 
common theme of MLC is optimization in different forms:

Minimize memory usage.

Improve execution efficiency.

Scaling to multiple heterogeneous nodes.



Machine Learning Compilation: Remarks

The term “compilation” make an analogy to traditional compilation (e.g. GCC). 
However, the techniques involved can be quite different for the two problems.

The process does not have to involve code generation – the deployment form 
can simply be a model description and an engine that execute it natively.

The development form and deployment form can be the same (in terms of 
framework interface). 

Deployment form also applies to training besides inference needs (e.g., on-
device intelligence for privacy reasons, scaling out).



Reason #1 to Study MLC: Build ML Deployment Solutions

A lot of complexities are involved in bringing machine learning models to 
production or incorporating novel model customizations.

Machine learning compilation gives us a set of tools to solve problems such as 
memory size reduction, efficiency optimization, and dependency minimization



Reason #2 : In-depth Understanding of Existing Frameworks

Machine learning compilation techniques are becoming increasingly 
relevant for machine learning frameworks.

Understanding the behind-scene techniques provides us super 
power to build models that can be co-optimized by the underlying 
techniques and enable us to push novel model customizations with 
good system support.



Reason #3 : Build Software Stack for Emerging Hardware

We are at a golden age of hardware accelerations for machine 
learning, with waves of environments and innovations coming up.

Machine learning compilation provides tools to build software 
stacks that keeps up with new hardware acceleration features and 
model developments.



Reason #4 : Machine Learning Compilation is Fun!

With the set of modern machine learning compilation tools, we can 
get into stages of machine learning model from high-level, code 
optimizations, to bare metal.

It is really fun to get end to end understanding of what is happening 
here and use them to solve our problems.
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Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the 
input, output and intermediate results of model 
executions.

Tensor Functions that encodes computations 
among the input/output. Note that a tensor 
function can contain multiple operations



Example Compilation Process 

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤"

𝑤! linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

In this particular example, two tensor functions are folded into 
one (linear-relu). With a specialized implementation (in reality, 
they will be implemented using low-level primitives).



Abstraction and Implementation
Abstraction refers to different ways to represent the same system 
interface (tensor function)

linear_relu

input: Tensor[(1, 3072)]

Tensor[(1, 200)]

Tensor[(1, 200)]

relu

linear

Three abstraction ways to represent the same tensor function (linear_relu), 
each providing a different level of details. In practice,  we usually say that the 
more specialized version is an implementation of higher-level abstraction.



MLC as Tensor Function Transformation 
(with different abstractions)

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤"

𝑤! linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Most MLC process can be viewed as transformation among tensor functions (that can 
be represented with different abstractions).



Four Categories of Abstractions We will Visit Later



Disclaimer
This is the first course for ML compilation (likely) in the world. 

The materials and content will likely adjust as we develop the course. Expect 
some issues in content and assignments. 

We are developing this topic together. Let us explore this fun topic as a 
community.



Logistics
Lectures: weekly recordings posted on the course webpage.

Code exercise: we will have code exercises for some episodes. They will be 
posted to Github with self-contained testcases that allow people to try and 
self-access.

Lecture notes: will be posted to mlc.ai after each lecture.

Discuss forum: links in the course webpage.



Summary
• Goals of machine learning compilation

• Integration and dependency minimization
• Leveraging hardware native acceleration
• Optimization in general

• Why study ML compilation 
• Build ML deployment solutions.
• In-depth view of existing ML frameworks.
• Build up software stack for emerging hardware.
• Have fun.

• Key elements of ML compilation 
• Tensor and tensor functions.
• Abstraction and implementation


