
Machine Learning Compilation

Tensor Program Abstraction

Tianqi Chen



Outline
Primitive Tensor Function

Tensor Program Abstraction



Outline
Primitive Tensor Function

Tensor Program Abstraction



Recap: Key Elements in Machine Learning Compilation

Tensor multi-dimensional array that stores the 
input, output and intermediate results of model 
executions.

Tensor Functions that encodes computations 
among the input/output. Note that a tensor 
function can contain multiple operations

input: Tensor[(1, 3072)]

relu

𝑤!

𝑤" linear

linear

softmax

Tensor[(1, 128)]

Tensor[(1, 128)]

Tensor[(1, 10)]

Tensor[(1, 10)]



Primitive Tensor Function

Primitive Tensor Function a tensor function that 
corresponds to a single “unit” of computational 
operation.

Note: what computations are “unit” can change as we transform the end to end tensor function (e.g. fusing two unit operator functions together)

input: Tensor[(1, 3072)]

relu

𝑤!

𝑤" linear

linear

softmax

Tensor[(1, 128)]

Tensor[(1, 128)]

Tensor[(1, 10)]

Tensor[(1, 10)]

add𝑏"
An example instance of primitive tensor function.



Primitive Tensor Functions in ML Frameworks

torch.add can be viewed as a primitive tensor function 

Note: we explicit allocate output memory in this example so underlying tensor primitive function implementation do not need to handle memory 
allocation and type conversion. The actual torch.add implementation can be more complicated and goes beyond this particular application scenario. 



Abstractions for Primitive Tensor Function

Abstraction refers to different ways to represent the same system interface.

torch.add

Three ways to represent the same tensor operator function that adds two 
vectors of length 128. The python and c version can be viewed as possible 
implementations of higher-level abstraction (torch.add).



MLC via Primitive Function Transformation

for x in range(128):

C[x] = A[x] + B[x] 

parallel for xo in range(32):

C[xo*4:xo*4+4] = f32x4.add(

A[xo*4:xo*4+4], B[xo*4:xo*4+4]) 

input: Tensor[(1, 3072)]

relu

𝑤!

𝑤" linear

linear

softmax

add𝑏"

input: Tensor[(1, 3072)]

relu

𝑤!

𝑤" linear

linear

softmax

add𝑏"

One most common MLC process that many frameworks offer is to transform the implementations of 
primitive functions(or dispatch them in runtime) to more optimized ones based on the environment.



Primitive Function Transformation

for x in range(128):

C[x] = A[x] + B[x] 

parallel for xo in range(32):

C[xo*4:xo*4+4] = f32x4.add(

A[xo*4:xo*4+4], B[xo*4:xo*4+4]) 

Remap to library calls: e.g. cuda, add => cudaAdd (will discuss in incoming lectures)

Fine grained program transformation

Given the overall execution structure remain the same, we only need to focus on 
transforming the primitive function itself.

Approaches for primitive function transformation

Different approaches may require different kinds of abstractions.



Outline
Primitive Tensor Function

Tensor Program Abstraction



Tensor Program Abstraction

An example tensor program instance



Key Elements of a Tensor Program

(Multi-dimensional) buffers that 
holds the input, output, and 
intermediate results.

Loop nests that drive compute iterations. 

Computations statement.

A typical tensor program abstraction contains multi-dimensional buffers, loop 
nests that drive compute iterations and finally computation statement itself.



Why do we need Tensor Program Abstraction

parallel for xo in range(32):

C[xo*4:xo*4+4] = f32x4.add(

A[xo*4:xo*4+4], B[xo*4:xo*4+4]) 

Carefully designed tensor program abstraction enables program-based transformations
among variants without reimplementation from scratch

xo, xi = split(x, 4)

parallelize(xo)

vectorize(xi)

for x in range(128):

C[x] = A[x] + B[x] 

Initial state

Program-based transformations

Transformed program

Enables specialization (to specific shape or device)



Example Transformation: Loop Splitting

for x in range(128):

C[x] = A[x] + B[x] 

for xo in range(32):

for xi in range(4):

C[xo * 4 + xi] 

= A[xo * 4 + xi] + B[xo * 4 + xi] 

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation

Pseudo code to for demonstrating 
ideas only



Example Transforming Loops: Loop Reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

for xo in range(32):

for xi in range(4):

C[xo * 4 + xi] 

= A[xo * 4 + xi] + B[xo * 4 + xi] 

for xi in range(4):

for xo in range(32):

C[xo * 4 + xi] 

= A[xo * 4 + xi] + B[xo * 4 + xi] Pseudo code to for demonstrating 
ideas only

Code Transformation



Example Transformation: Thread Binding

def gpu_kernel():

C[threadId.x * 4 + blockIdx.x] = . . . 

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

for xi in range(4):

for xo in range(32):

C[xo * 4 + xi] 

= A[xo * 4 + xi] + B[xo * 4 + xi] 

Pseudo code to for demonstrating 
ideas only

Code Transformation



We cannot Arbitrarily Transform any Program

for xo in range(32):

for xi in range(4):

C[xo * 4 + xi] 

= A[xo * 4 + xi] + C[max(xo * 4 + xi – 1, 0)] 

We cannot reorder xo and xi in this 
example

Extra structure information (or analysis to recover the structure information) is needed in 
actual tensor program abstractions to avoid such kinds of transformations.



Extra Structure in Tensor Program Abstraction

The additional structure information (about iterators) helps us to detect incorrect transformations and provide more information
for the MLC process. We can usually obtain these information from the definition of primitive tensor functions. 

vi corresponds to an iterator of length 
128 and can be spatially parallelized 
without dependency across other loop 
values of vi 

Extra information about iteration 



Tensor Program Transformation in Action



Summary
• Primitive tensor function refers to the single unit of computation in model execution.

• One important MLC process is to transform implementation of primitive tensor functions.

• Tensor program is an effective abstraction to represent primitive tensor functions.
• Key elements include: multi-dimensional buffer, loop nests, computation statement.
• Program-based transformations can be used to optimize tensor programs.
• Extra structure can help to provide more information to the transformations.


